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Abstract 

Having a robust Plug-and-Play architecture in the industrial context is one of the main goals of 
Industry 4.0. In this paper, we focus on describing one approach in reaching this goal and present an 
initial prototype of the solution. The approach is centered on abstract device descriptions and 
automatic generation of device drivers.  We base our approach around open-source technologies and 
commonly used communication protocols. The aim of this approach is to enable better interoperability, 
and therefore to improve flexibility of production processes. 

Key words: industry 4.0, industrial internet of things, plug-and-play, industrial network, integration 

1. INTRODUCTION
A factory or even a single production unit comprises 
many different devices and machines. Most of them are 
rigid and inflexible since they are integrated into a 
system that is not supposed to change too often. In 
cases when changes are necessary, they usually affect 
many independent parts of the system. These changes 
are often handled by many different system integrators 
who are usually remote engineers. The need for 
participation of more engineers, especially remote ones, 
increases logistics and personnel costs. Some of the 
main goals of Industry 4.0 [6] are to reduce complexity 
and production costs while increasing the degree of 
flexibility in production processes. Ideally, such a 
reduction would comprise highly scalable production 
units. Such modernized production units would allow 
easy modifications and repairs while allowing for the 
production to run continuously, without any or just with 
short interruptions. Some changes to the production 
unit could be made online, without the need of stopping 
the production or involving too many employees. This 
would reduce a cost of running a production unit and 
increase an output of the system as its downtime is 
significantly reduced. One of the main elements of 
industrial production that hinders its flexibility is the 
communication between devices. The communication 
between devices of various types and purposes can be 
very inflexible even if they are a part of the same 
production unit. It often requires a specialized and in-
depth knowledge of many protocols and interfaces by 

an engineer, just for all the devices to be connected. 
This may be solved with an additional connectivity layer 
that would be implemented by following the main Plug-
and-Play concepts. In such a connectivity layer, all 
devices would be considered as black boxes whose 
description allows for the appropriate driver to be found 
and device to be integrated. These Plug-and-Play 
concepts were applied in various systems for a past few 
decades. We feel that these concepts are expressive 
enough to be applied in the industrial context as well.  
The goal of our research is to deliver an approach and 
a software solution which would enable easier 
connectivity of industrial components and machines. 
Our approach implies following generally accepted 
Plug-and-Play mechanism of attaching a hardware 
component in a system without the need for knowing 
exact physical device configuration. Following this 
approach will enable better interoperability of devices in 
the industrial setting. We think that this leads to greater 
flexibility of production processes, which is one of the 
basic postulates of Industry 4.0. 
In addition to the Introduction and Conclusion, this 

paper has five more sections. In Section 2, we provide 

an overview of the current state in the field with a 

description of existing solutions. In Section 3 we 

introduce the problem we aim to solve and the initial 

approach to solving the problem. In the same section, 

we derive requirements for the approach. We present 

some implementation details of the prototype developed 

in support to our approach in Section 4. Afterwards, in 
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Section 5, we present a use case in which we have 

tested our approach and the prototype in order to 

provide a proof of concept. In Section 6 we provide a 

short discussion about advantages and disadvantages 

of our approach which we have identified while applying 

it in the presented use case. 

2. RELATED WORK
In our literature survey, we found some research papers 
which present work aimed at improving connectivity 
within the field of Industrial Internet of Things (IIoT). The 
approaches presented in these papers aim to improve 
the connectivity by using Gateway [1] or Smart-Hub [2] 
devices. The authors of [1], present the architecture of 
an IIoT Gateway and a Cloud solution that both 
comprise Controller and Data Manager modules. The 
Controller module is implementing control functions for 
controlling the devices, and the Data Manager module 
is implementing data functions for data processing, 
transformation and conversion. The entire architecture 
of the solution is based on the Hypertext Transfer 
Protocol (HTTP) protocol, web sockets, and other 
widely used web technologies making the solution 
easily integrated into the current web information 
systems. However, the authors only introduced the 
architecture without really presenting how to solve 
device interoperability issues. In [2], authors present the 
IIoT-based Smart-Hub that receives raw data from IIoT 
devices. The preprocessed data is transferred to the 
Microservice-based IIoT Cloud Platform. The transfer is 
done by serializing data in Extensible Markup Language 
(XML)1 or JavaScript Object Notation (JSON)2 formats 
and sending the data over the Message Queue 
Telemetry Transport (MQTT)3 and Constrained 
Application Protocol (CoAP)4 lightweight protocols. 
However, the authors of the paper also do not provide a 
description on how they connect devices with different 
protocols. Eclipse Hono [VII] architecture is based on 
using scalable Advanced Message Queuing Protocol 
(AMQP)5 messaging middleware between devices and 
backend services. If a given device needs to send the 
data over a non-AMQP protocol, it connects to a 
protocol adapter responsible for conversion between 
AMQP and non-AMQP messages. Although Hono 
seems to resemble our approach, we found that it 
focuses more on IoT and Cloud systems in general, and 
not in the industrial setting. Furthermore, Hono focuses 
more on a manual specification of adapters, while a pure 
Plug-and-Play  mechanism would lean more to the 
automatic integration.  
To enable a fully functional Plug-and-Play mechanism, 
components of the value chain in the IIoT systems need 
a common language to understand each other. In paper 
[3], authors propose an interaction model based on The 
Reference Architectural Model for Industry 4.0 (RAMI 
4.0), which is service oriented architecture based on the 

1 XML: https://www.w3.org/XML/ 
2 JSON: http://www.json.org/ 
3 MQTT: http://mqtt.org/ 
4 CoAP: http://coap.technology/ 
5 AMQP: https://www.amqp.org/ 

Open Platform Communications Unified Architecture6 
(OPC-UA) protocol. RAMI 4.0 is much more complex 
and includes many segments other than connectivity 
which are not needed for the solution that we aimed our 
focus on. However, it is interesting to see how the RAMI 
4.0 positions the integration and connectivity layer in 
the grand scheme of things in the domain of IIoT. It 
regards this layer as one of the main enablers of the 
future “smart” industry. 
 Several other solutions with similar background and 
purpose to our solution are offered on the market, such 
as Allentia IoT Gateway [I], Thnghub [II], AWS IoT [III] 
or DGLux5 [IV]. However, all of these are commercial 
products that we haven’t had a chance to test and 
further investigate. Thnghub [II] seems to follow a 
similar approach to the one presented in this paper. But 
from the available documentation, we were not able to 
fully investigate all the functionality and internals of the 
solution. Amazon AWS IoT [III] offers a solution in 
which devices communicate securely and efficiently 
with some of AWS Services like Elasticsearch7. The 
problem is that it only supports MQTT and HTTP 
protocols, which we find limiting, especially in the 
industrial setting. DGLogic DGLux5 [IV] enables access 
to several IoT data sources in a single, unified 
workspace via drag&drop data binding. It also 
comprises tools for building applications on top of the 
connected devices through visual programming and 
wizards and visual assistants. It is based on Distributed 
Services Architecture (DSA) [V], an open source 
Internet of Things (IoT) platform whose objective “is to 
unify disparate devices, services and applications into a 
structured and adaptable real-time data model”. 
However, while DSA is open source, DGLux5 is a 
commercial product. In our opinion Allentia’s product, 
IoT Gateway [I], has the most complete set of 
functionalities to tackle interoperability issue in the 
industrial setting. Their “semantic” Gateway bridges 
industrial devices and enterprise applications such as 
Google Analytics8. Allentia promises a library of 
thousands of already available device drivers on one 
hand, and a possibility to write user-defined drivers. 
However, the big limitations that we found in this 
solution are both hardware and software dependence 
on the Allentia itself. Moreover, since it is a commercial 
product, we were not able to test it and test the 
performance of the platform as well as the 
interoperability with different industrial devices.  
It is evident that field of Industry 4.0 will evolve in the 
forthcoming years. Some products like Harting Modular 
Industry Computing Architecture (MICA) [VI][5] are 
already being advertised as huge cost savers, while 
others like Allentia IoT Gateway [I] and Evrything 
Thnghub [II] promise a possibility to connect any device 
to any application. Germany, as one of the world 
leaders in industrial research and production, has a 
long running federal strategy [4] of investing into the 

6 OPC-UA: https://opcfoundation.org/about/opc-technologies/opc-ua/
7 Amazon Elasticsearch: https://aws.amazon.com/elasticsearch-
service/ 
8 Analytics: 
https://www.google.com/analytics/analytics/#?modal_active=none 
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research in the field. Taking this into consideration, we 
are certain that our solution will also be of interest in 
years to come. We are focused on solving multiplatform 
connectivity issues in the field of IIoT, while strongly 
relying on open-source technologies. Open-source 
communities are some of the key providers of 
technology for the software industry in last decades [7]. 
We find that there is still a lack of communities that 
tackle problems in IIoT and that this is one of the 
advantages of our approach over the analyzed ones.   

3. THE APPROACH TO DEVICE RECOGNITION
AND INTEGRATION 
In this paper, we present our initial research on 
recognizing devices which enter a closed 
system/network and their “injection” into the system. 
Our approach closely resembles the Plug-and-Play 
approach encountered in contemporary personal 
computers and their handling of USB devices. Every 
device needs to freely share information about itself 
while at the same time being able to recognize and then 
communicate with other devices. This is hardly possible 
without some kind of a mediator. Therefore, our 
approach is centered on a Server and a Gateway that 
are connected and able to recognize new devices and 
enable communication between all the devices – 
directly or indirectly. This suggests that there are two 
main modules of the system architecture on top of 
which our approach is implemented. These modules, 
presented in Figure 1, are a Communication Enabling 
Server (in later text CES or Server) and an IIoT 
Gateway (in the later text just Gateway).  

3.1. The Main Modules of the Solution 
The main functionality of CES includes: (i) maintenance 
of the Database (DB) in which device descriptions are 
stored and (ii) generation of drivers for any pre-
described device that enters the system. Currently, 
Server generates a custom driver for devices which 
have their description in the DB but does not generate a 
fully custom driver for a completely new and 
unrecognizable device. Instead, similar to the USB 
driver mechanism, it generates a “generic device” 
driver. Server stores device type descriptions that are 
previously created by engineers or device 
manufacturers. Depending on the connected device, it 
automatically generates a driver via an internal 
generator that takes the description and produces an 
executable flow for data transformation. Server 
communicates the driver via a RESTful web service 
(REST) to Gateway, a second module of the system in 
which the devices are being tracked and whose 
protocols are being translated. 
Gateway bridges the communication gap between 
devices (actuators, sensors and other equipment) and 
the system as a whole. It serves as a multi-protocol 
control unit that handles connectivity between the new 
and existing devices. Therefore it represents a key 
access point for the network connectivity, regardless of 
protocols and interfaces. The main goal of Gateway is 
to “translate” various protocols that all the connected 
devices are communicating with. All the protocols are 
transformed to standardized IIoT protocols, OPC-UA 

and MQTT. External applications see the entire system 
through these two protocols regardless of the number of 
other devices and other protocols. This enables the 
end-user to develop applications that are better 
optimized and custom made to the system as a whole. 
Field devices are connected to Gateway via one of the 
commonly used interfaces, like EtherCAT9, Wi-Fi, 
Bluetooth Low Energy (BLE10), Zigbee11 etc. All 
additional interfaces and protocols could also be 
supported with additional work on our side, based on 
the integration of previously supported protocols and 
interfaces.  Each interface has specific features that 
have to be adapted in the course of transformation to 
output protocols on Gateway – both OPC-UA and 
MQTT. These adaptations are done only once, during 
the initial introduction of a new interface or protocol. 
Once the protocol and interface are supported on 
Gateway, the end-user only needs to write a compatible 
device description. In Figure 1, we present the bottom 
and upper communication layers of Gateway. 
Regardless of the entry interface of the connected 
devices, OPC-UA and MQTT are the only two protocols 
that are visible outside of Gateway. The only entry point 
to the system is our Gateway enabling us to have 
logical independence from the concrete connectivity 
protocols on the production floor.  

3.2. Steps of the Approach 
When a device enters the system, e.g. sensor S1 is 
plugged via an Ethernet cable, it communicates to a 
module. The device informs Gateway about the protocol 
over which it exchanges data. Gateway identifies the 
device and sends an input to Server via Application 
Programming Interface (API) and requests an 
appropriate device driver. The driver is generated on 
the Server side, only after the adequate device is 
recognized in the list of defined descriptors that is read 
from the database. As soon as the driver is generated 
and the data transformation for the device is enabled on 
the Gateway side, all the available variables and 
functions of the device are transformed to adequate 
OPC-UA variables and MQTT topics. With these 
transformations, the device is being able to (indirectly) 
communicate to all the other devices via its protocol or 
via the other supported protocols. For example, 
although being a predominantly MQTT device, S1 can 
establish a communication with S2 or A1. The means of 
the communication are defined at the Application layer 
of the system, independently of Server or Gateway 
layers. With the continuing improvement of all the layers 
it will be possible to enrich the application layer as well. 
Ideally it would enable end-users to have an automated 
process in a modern GUI (e.g. Simulink12 like 
application) in which all the devices would be out-of-the-
box blocks that are ready to be connected to each 
other.

9 EtherCAT: https://www.ethercat.org/default.htm 
10 BLE: https://www.bluetooth.com/what-is-bluetooth-technology/how-
it-works/le-p2p 
11 Zigbee: https://www.digi.com/resources/standards-and-
technologies/rfmodems/zigbee-wireless-standard 
12 Simulink: https://www.mathworks.com/products/simulink.html 
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Figure 1 – The architecture of the proposed solution. 

4. PROTOTYPE SOLUTION
Server is implemented as a RESTful application using 
the Spring framework13. Gateway is implemented as a 
combination of a Spring-based application and Node-
RED14, an open-source IoT connectivity framework. 
Gateway is physically stored on a Raspberry PI15 unit 
that runs on Raspbian16, a Linux-based operating 
system. Because of its more complex nature and 
potential growth of the device descriptions database, 
Server runs on a PC. Neither Gateway nor Server 
required too much hardware resources and have 
worked without any problems in our limited prototype. 
Server application comprises two main components: (i) 
the DB component which stores device descriptors and 
(ii) the device driver generator component. We are 
using an IoT-based descriptive language that enables 
us to write abstract device descriptions. These 
technology agnostic descriptions are practically 
information models of a single device. Based on a 
device description, e.g. device description provided by a 
manufacturer, a compatible, platform specific device 
driver is generated and the device is put to use. 
Therefore the key starting point of this process is to 
have a proper device description. For the needs of the 
prototype, we have chosen the open-source Eclipse 
Vorto17 project because of its features – Vorto Toolset 
and Repository primarily. Definition of a function block 
written in Vorto is straight forward and easily readable 

13 Spring Boot: https://projects.spring.io/spring-boot/ 
14 Node-RED: https://nodered.org/ 
15 Raspberry PI: https://www.raspberrypi.org/ 
16 Raspbian: https://www.raspberrypi.org/downloads/raspbian/ 
17 Vorto: http://www.eclipse.org/vorto/ 

by a regular user of the system. The key elements of 
Vorto descriptions are device status and operations 
fields. Device descriptions are written manually using 
the Vorto GUI, but the goal is to have this process 
partially automatized in the future. Also, there is an 
existing repository of existing device description that 
can be reused. In our solution, all descriptions are 
stored in the MySQL DB and are later retrieved from the 
DB by providing a device ID. The device ID can be a 
MAC address of BLE or LAN devices or some other, 
device-specific ID that is broadcast by the device upon 
connecting to Gateway. The device driver generator is 
implemented in Java and takes the device description 
fetched from the DB as an input. A generated driver 
represents a Node-RED communication flow that is 
delivered via REST API to Gateway. It is then inserted 
into a running Node-RED instance and immediately it 
starts to translate data from the new device to OPC-UA 
and MQTT protocols which Servers are incorporated in 
Gateway. 
The heart of Gateway is a Node-RED-based application 
that runs and continuously listens to and detects the 
arrival of new devices into our closed network. One of 
the nodes that is repeatedly running is the Linux 
Address Resolution Protocol (ARP) scanner, a tool that 
scans and refreshes the list of all the connected devices 
on a specified network interface. Devices are 
recognized and their IP or MAC addresses are cached. 
Gateway then sends a request for the adequate driver 
for the device to Server. As previously explained, this 
driver is being generated on the Server side and sent 
back to Gateway. If the driver is received correctly, the 
Data transformation block on Gateway is enabled and 
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appropriate variables on the internal OPC-UA Server 
and corresponding topics on the MQTT Broker are 
dynamically created. 
At this moment, the third component of our system, the 
Application, is also implemented in Node-RED. Within 
it, we create several nodes that represent simulated 
production process. As soon as another device comes 
into the system, its variables/topics are created and can 
be manipulated with in this temporary application layer. 
The Application itself was not one of the targets of our 
research and this was made just for testing purposes.  

5. THE PLASTIC MOLDING MACHINE USE
CASE 
In order to make a proof of concept of the given 
approach, we have set up a small model of a production 
unit which is used as a prototype. Plastic parts are 
produced in a molding machine whose heart is an 
industrial PC. The parts are transported through the 
production unit via several conveyor belts. During the 
transportation the plastic parts are being tested and 
sorted, as part of quality assurance process. Our model 
consists of a functional industrial PC, a modeled 
conveyor belt, a few small single-board computers, a 
set of LEGO Mindstorms18 and a smart sensor unit. The 
used IPC is a commercial device, high-end controller of 
KEBA’s CP3xx series. It runs an IEC61131-319 
application with all the variables being shared via 
integrated OPC-UA Server. These variables are later 
used in the prototype. 

Figure 2 - Model of production unit used for proof of concept 

LEGO Mindstorms serves as a simulator of two devices 
– a color sensor on one hand and a sorting actuator on
the other. Texas Instruments SensorTag20 is used as a 
temperature sensor that enters the system later during 
the production and enriches the process. It’s already 
prepared IoT profiles and interfaces enabled us an easy 

18 LEGO Mindstorms: 
http://www.education.rec.ri.cmu.edu/content/lego/ev3/files/EV3%20te
achers%20guideWEB.pdf 
19 IEC61131-3: 
http://www.plcopen.org/pages/tc1_standards/iec_61131_3/ 
20 TI SensorTag: 
http://www.ti.com/ww/en/wireless_connectivity/sensortag/ 

introduction of sensors into our production process in 
real-time. Raspberry PI, used to host Gateway and IPC 
both run on Debian based Linux operating systems. 
Server can run on both Windows and Linux operating 
systems. Conveyor belt used in the production unit is 
only a toy model that is adjusted to our needs with 
adding a small DC motor that controls the flow. The 
process itself is straight forward. The simulation of the 
plastic brick production runs on the IPC. Bricks are laid 
down on the conveyor belt in a predefined time interval. 
They run underneath the color sensor and depending 
on their color are sorted in one of two stocks. 
Simulation is partially depicted on Figure 2. 
All the components of the production unit are inserted 
into a closed network one by one, while their drivers are 
being generated dynamically. As soon as the 
connectivity is successful, the full process can be 
monitored via a 3rd party client application, e.g. OPC-
UA Server can be analyzed through UA Expert21. When 
a temperature sensor is added to the network, the 
process of generating the driver is repeated and the 
“production” process in our production unit is enriched 
with the possibility to follow and react to additional 
conditions for the actuator operations. The basic option 
would be to add a third level of selection or to stop a 
whole production process if a condition is satisfied. For 
example, if the ambient temperature is above 45°C the 
production process should be stopped. Potentially, we 
could replace the color sensor or the temperature 
sensor in real-time and still be able to keep the process 
running, which argues towards the robustness of the 
presented solution. 

6. DISCUSSION
In the previous sections, we presented an initial 
implementation of our approach. Not only that we 
focused on delivering a simple realization of the goals, 
but we also tried to fit it in a real-life use case, which 
enabled us to analyze advantages and disadvantages 
of the current solution. We wanted to build a system in 
which devices could be easily detected and connected, 
with as less coding for the end-user as possible. 
One of the first benefits of our implementation is the 
easiness in describing devices. An engineer does not 
need to write a complete driver for any particular devices 
that enter the system – he can just reuse the previously 
written description for a similar device with small amount 
of changes. All the descriptions are adaptable but 
straight forward. The main goal is to easily replace one 
device with another of the same type, e.g. switching 
temperature sensors. Although two sensors may have 
different realization, their descriptions can still be the 
same, since their main function is to measure 
temperature before anything else. 
On the other hand, our generative approach may lead 
to potential performance issues, as a manual 
implementation of device drivers most probably leads to 
a faster communication. Our assumption here is that 
the process of automatized generation of drivers is 
several times faster than manual implementation while 

21 UA Expert: https://www.unified-
automation.com/products/development-tools/uaexpert.html 
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the system is more flexible at the same time. The 
assumption is yet to be confirmed through the detailed 
tests planned for the next phase of the research.  
Ideally, we would like to have fully functional and robust 
Plug-and-Play mechanism on the similar level 
compared to personal computing. This is obviously a 
hard task to accomplish in one step but does not seem 
so far-fetched with the assumption of the industry really 
evolving towards standardized protocols like OPC-UA. 
There are several commercial products that already 
offer solutions similar to ours, but none of them is 
offering a “free of charge” approach. Also, none of the 
solutions that we have analyzed offers a level of 
automatized generation of drivers like it is offered by the 
solution presented in this paper.  
At the moment we are focused on implementing support 
for OPC-UA and MQTT standardized devices, but it is 
clearly a doable task to translate the current knowledge 
to other standards as well. We expect that with the 
further company and men support we would be able to 
cover as many interfaces, protocols and devices as 
possible, in order to already have a widely supported 
and powerful solution.  

7. CONCLUSION
In this paper, we presented our approach for bringing 
Plug-and-Play concept closer to production processes 
in industrial automation. We proposed an approach 
which is based on open-source technologies and 
available for all the users without the need for additional 
hardware. We also showed that our solution is generic, 
platform independent and easily expendable, which 
may prove as a valuable asset. In order to evaluate the 
approach, we presented a prototype which was built 
using small electronic devices and PCs and applied in a 
simulation of a real use case. There are two key 
benefits of our implementation. First is the increased 
degree of automatization in device driver creation 
process. Second is the increased level of abstraction in 
writing device descriptions. The mentioned increases 
may lead to lower performances in communication, but 
additional tests must be carried out before final 
conclusions are made. 
One direction of future work is to try out other 
description languages, e.g. Franca22, in order to 
evaluate other approaches of specifying the device 
description. These other description languages might 
prove to be easier to learn or to use than Vorto which 
would further ease the only manual task that still needs 
to be performed. One of our main goals in the future is 
to have a Process tool that would be block-based. The 
solution presented in this paper would be a connectivity 
layer for fully functional, advanced GUI that would show 
all newly arriving devices as basic function blocks. This 
would enable us to have, at least logically, direct 
communication between various devices, irrelevant of 
the background implementation of the data 
transformation. Further steps include thinking of more 
robust and more efficient recognition of the devices 
entry. One of the approaches is to have these device 

22 Franca: https://github.com/franca/franca/ 

descriptions stored on the devices itself, but it is a far-
fetched and inappropriate solution for older, already 
deployed devices in the industry. 
We find that we may have a strong enough starting 
point for an AI solution that could bring the process of 
generating the drivers to a higher level. Future research 
will be also focused on delivering a fully automatized 
Plug-and-Play mechanism that would enable the 
recognition of completely new devices entering the 
system and adding them to the production process 
without any previous knowledge of the device. For 
example, device descriptions could already be 
generated automatically for groups of devices that use 
standardized communication protocols i.e. those that 
support OPC-UA, since there are some standardized 
mechanisms of serving the data. 
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