
XVII International Scientific Conference on Industrial Systems (IS'17)

Novi Sad, Serbia, October 4. – 6. 2017.
University of Novi Sad, Faculty of Technical Sciences,

Department for Industrial Engineering and Management
Available online at http://www.iim.ftn.uns.ac.rs/is17

IS'17

Towards a Plug-and-Play Architecture in Industry 4.0

Milan Pisarić
(Software Engineer, KEBA d.o.o., Nikole Pašića 11 Novi Sad, Serbia, pisa@keba.com)

Vladimir Dimitrieski
(Teaching Assistant, Faculty of Technical Sciences, Novi Sad, Serbia, dimitrieski@uns.ac.rs)

Milan Babić
(Student, Faculty of Technical Sciences, Novi Sad, Serbia, babic@uns.ac.rs)

Stefan Veselinović
(Student, Faculty of Technical Sciences, Novi Sad, Serbia, stefanveselinovic@uns.ac.rs)

Filip Dušić
(Student, Faculty of Technical Sciences, Novi Sad, Serbia, filip.dusic@uns.ac.rs)

Abstract

Having a robust Plug-and-Play architecture in the industrial context is one of the main goals of
Industry 4.0. In this paper, we focus on describing one approach in reaching this goal and present an
initial prototype of the solution. The approach is centered on abstract device descriptions and
automatic generation of device drivers. We base our approach around open-source technologies and
commonly used communication protocols. The aim of this approach is to enable better interoperability,
and therefore to improve flexibility of production processes.

Key words: industry 4.0, industrial internet of things, plug-and-play, industrial network, integration

1. INTRODUCTION
A factory or even a single production unit comprises
many different devices and machines. Most of them are
rigid and inflexible since they are integrated into a
system that is not supposed to change too often. In
cases when changes are necessary, they usually affect
many independent parts of the system. These changes
are often handled by many different system integrators
who are usually remote engineers. The need for
participation of more engineers, especially remote ones,
increases logistics and personnel costs. Some of the
main goals of Industry 4.0 [6] are to reduce complexity
and production costs while increasing the degree of
flexibility in production processes. Ideally, such a
reduction would comprise highly scalable production
units. Such modernized production units would allow
easy modifications and repairs while allowing for the
production to run continuously, without any or just with
short interruptions. Some changes to the production
unit could be made online, without the need of stopping
the production or involving too many employees. This
would reduce a cost of running a production unit and
increase an output of the system as its downtime is
significantly reduced. One of the main elements of
industrial production that hinders its flexibility is the
communication between devices. The communication
between devices of various types and purposes can be
very inflexible even if they are a part of the same
production unit. It often requires a specialized and in-
depth knowledge of many protocols and interfaces by

an engineer, just for all the devices to be connected.
This may be solved with an additional connectivity layer
that would be implemented by following the main Plug-
and-Play concepts. In such a connectivity layer, all
devices would be considered as black boxes whose
description allows for the appropriate driver to be found
and device to be integrated. These Plug-and-Play
concepts were applied in various systems for a past few
decades. We feel that these concepts are expressive
enough to be applied in the industrial context as well.
The goal of our research is to deliver an approach and
a software solution which would enable easier
connectivity of industrial components and machines.
Our approach implies following generally accepted
Plug-and-Play mechanism of attaching a hardware
component in a system without the need for knowing
exact physical device configuration. Following this
approach will enable better interoperability of devices in
the industrial setting. We think that this leads to greater
flexibility of production processes, which is one of the
basic postulates of Industry 4.0.
In addition to the Introduction and Conclusion, this

paper has five more sections. In Section 2, we provide

an overview of the current state in the field with a

description of existing solutions. In Section 3 we

introduce the problem we aim to solve and the initial

approach to solving the problem. In the same section,

we derive requirements for the approach. We present

some implementation details of the prototype developed

in support to our approach in Section 4. Afterwards, in

136

Pisarić et al.

IS'17

Section 5, we present a use case in which we have

tested our approach and the prototype in order to

provide a proof of concept. In Section 6 we provide a

short discussion about advantages and disadvantages

of our approach which we have identified while applying

it in the presented use case.

2. RELATED WORK
In our literature survey, we found some research papers
which present work aimed at improving connectivity
within the field of Industrial Internet of Things (IIoT). The
approaches presented in these papers aim to improve
the connectivity by using Gateway [1] or Smart-Hub [2]
devices. The authors of [1], present the architecture of
an IIoT Gateway and a Cloud solution that both
comprise Controller and Data Manager modules. The
Controller module is implementing control functions for
controlling the devices, and the Data Manager module
is implementing data functions for data processing,
transformation and conversion. The entire architecture
of the solution is based on the Hypertext Transfer
Protocol (HTTP) protocol, web sockets, and other
widely used web technologies making the solution
easily integrated into the current web information
systems. However, the authors only introduced the
architecture without really presenting how to solve
device interoperability issues. In [2], authors present the
IIoT-based Smart-Hub that receives raw data from IIoT
devices. The preprocessed data is transferred to the
Microservice-based IIoT Cloud Platform. The transfer is
done by serializing data in Extensible Markup Language
(XML)1 or JavaScript Object Notation (JSON)2 formats
and sending the data over the Message Queue
Telemetry Transport (MQTT)3 and Constrained
Application Protocol (CoAP)4 lightweight protocols.
However, the authors of the paper also do not provide a
description on how they connect devices with different
protocols. Eclipse Hono [VII] architecture is based on
using scalable Advanced Message Queuing Protocol
(AMQP)5 messaging middleware between devices and
backend services. If a given device needs to send the
data over a non-AMQP protocol, it connects to a
protocol adapter responsible for conversion between
AMQP and non-AMQP messages. Although Hono
seems to resemble our approach, we found that it
focuses more on IoT and Cloud systems in general, and
not in the industrial setting. Furthermore, Hono focuses
more on a manual specification of adapters, while a pure
Plug-and-Play mechanism would lean more to the
automatic integration.
To enable a fully functional Plug-and-Play mechanism,
components of the value chain in the IIoT systems need
a common language to understand each other. In paper
[3], authors propose an interaction model based on The
Reference Architectural Model for Industry 4.0 (RAMI
4.0), which is service oriented architecture based on the

1 XML: https://www.w3.org/XML/
2 JSON: http://www.json.org/
3 MQTT: http://mqtt.org/
4 CoAP: http://coap.technology/
5 AMQP: https://www.amqp.org/

Open Platform Communications Unified Architecture6
(OPC-UA) protocol. RAMI 4.0 is much more complex
and includes many segments other than connectivity
which are not needed for the solution that we aimed our
focus on. However, it is interesting to see how the RAMI
4.0 positions the integration and connectivity layer in
the grand scheme of things in the domain of IIoT. It
regards this layer as one of the main enablers of the
future “smart” industry.
 Several other solutions with similar background and
purpose to our solution are offered on the market, such
as Allentia IoT Gateway [I], Thnghub [II], AWS IoT [III]
or DGLux5 [IV]. However, all of these are commercial
products that we haven’t had a chance to test and
further investigate. Thnghub [II] seems to follow a
similar approach to the one presented in this paper. But
from the available documentation, we were not able to
fully investigate all the functionality and internals of the
solution. Amazon AWS IoT [III] offers a solution in
which devices communicate securely and efficiently
with some of AWS Services like Elasticsearch7. The
problem is that it only supports MQTT and HTTP
protocols, which we find limiting, especially in the
industrial setting. DGLogic DGLux5 [IV] enables access
to several IoT data sources in a single, unified
workspace via drag&drop data binding. It also
comprises tools for building applications on top of the
connected devices through visual programming and
wizards and visual assistants. It is based on Distributed
Services Architecture (DSA) [V], an open source
Internet of Things (IoT) platform whose objective “is to
unify disparate devices, services and applications into a
structured and adaptable real-time data model”.
However, while DSA is open source, DGLux5 is a
commercial product. In our opinion Allentia’s product,
IoT Gateway [I], has the most complete set of
functionalities to tackle interoperability issue in the
industrial setting. Their “semantic” Gateway bridges
industrial devices and enterprise applications such as
Google Analytics8. Allentia promises a library of
thousands of already available device drivers on one
hand, and a possibility to write user-defined drivers.
However, the big limitations that we found in this
solution are both hardware and software dependence
on the Allentia itself. Moreover, since it is a commercial
product, we were not able to test it and test the
performance of the platform as well as the
interoperability with different industrial devices.
It is evident that field of Industry 4.0 will evolve in the
forthcoming years. Some products like Harting Modular
Industry Computing Architecture (MICA) [VI][5] are
already being advertised as huge cost savers, while
others like Allentia IoT Gateway [I] and Evrything
Thnghub [II] promise a possibility to connect any device
to any application. Germany, as one of the world
leaders in industrial research and production, has a
long running federal strategy [4] of investing into the

6 OPC-UA: https://opcfoundation.org/about/opc-technologies/opc-ua/
7 Amazon Elasticsearch: https://aws.amazon.com/elasticsearch-
service/
8 Analytics:
https://www.google.com/analytics/analytics/#?modal_active=none

137

Pisarić et al.

IS'17

research in the field. Taking this into consideration, we
are certain that our solution will also be of interest in
years to come. We are focused on solving multiplatform
connectivity issues in the field of IIoT, while strongly
relying on open-source technologies. Open-source
communities are some of the key providers of
technology for the software industry in last decades [7].
We find that there is still a lack of communities that
tackle problems in IIoT and that this is one of the
advantages of our approach over the analyzed ones.

3. THE APPROACH TO DEVICE RECOGNITION
AND INTEGRATION
In this paper, we present our initial research on
recognizing devices which enter a closed
system/network and their “injection” into the system.
Our approach closely resembles the Plug-and-Play
approach encountered in contemporary personal
computers and their handling of USB devices. Every
device needs to freely share information about itself
while at the same time being able to recognize and then
communicate with other devices. This is hardly possible
without some kind of a mediator. Therefore, our
approach is centered on a Server and a Gateway that
are connected and able to recognize new devices and
enable communication between all the devices –
directly or indirectly. This suggests that there are two
main modules of the system architecture on top of
which our approach is implemented. These modules,
presented in Figure 1, are a Communication Enabling
Server (in later text CES or Server) and an IIoT
Gateway (in the later text just Gateway).

3.1. The Main Modules of the Solution
The main functionality of CES includes: (i) maintenance
of the Database (DB) in which device descriptions are
stored and (ii) generation of drivers for any pre-
described device that enters the system. Currently,
Server generates a custom driver for devices which
have their description in the DB but does not generate a
fully custom driver for a completely new and
unrecognizable device. Instead, similar to the USB
driver mechanism, it generates a “generic device”
driver. Server stores device type descriptions that are
previously created by engineers or device
manufacturers. Depending on the connected device, it
automatically generates a driver via an internal
generator that takes the description and produces an
executable flow for data transformation. Server
communicates the driver via a RESTful web service
(REST) to Gateway, a second module of the system in
which the devices are being tracked and whose
protocols are being translated.
Gateway bridges the communication gap between
devices (actuators, sensors and other equipment) and
the system as a whole. It serves as a multi-protocol
control unit that handles connectivity between the new
and existing devices. Therefore it represents a key
access point for the network connectivity, regardless of
protocols and interfaces. The main goal of Gateway is
to “translate” various protocols that all the connected
devices are communicating with. All the protocols are
transformed to standardized IIoT protocols, OPC-UA

and MQTT. External applications see the entire system
through these two protocols regardless of the number of
other devices and other protocols. This enables the
end-user to develop applications that are better
optimized and custom made to the system as a whole.
Field devices are connected to Gateway via one of the
commonly used interfaces, like EtherCAT9, Wi-Fi,
Bluetooth Low Energy (BLE10), Zigbee11 etc. All
additional interfaces and protocols could also be
supported with additional work on our side, based on
the integration of previously supported protocols and
interfaces. Each interface has specific features that
have to be adapted in the course of transformation to
output protocols on Gateway – both OPC-UA and
MQTT. These adaptations are done only once, during
the initial introduction of a new interface or protocol.
Once the protocol and interface are supported on
Gateway, the end-user only needs to write a compatible
device description. In Figure 1, we present the bottom
and upper communication layers of Gateway.
Regardless of the entry interface of the connected
devices, OPC-UA and MQTT are the only two protocols
that are visible outside of Gateway. The only entry point
to the system is our Gateway enabling us to have
logical independence from the concrete connectivity
protocols on the production floor.

3.2. Steps of the Approach
When a device enters the system, e.g. sensor S1 is
plugged via an Ethernet cable, it communicates to a
module. The device informs Gateway about the protocol
over which it exchanges data. Gateway identifies the
device and sends an input to Server via Application
Programming Interface (API) and requests an
appropriate device driver. The driver is generated on
the Server side, only after the adequate device is
recognized in the list of defined descriptors that is read
from the database. As soon as the driver is generated
and the data transformation for the device is enabled on
the Gateway side, all the available variables and
functions of the device are transformed to adequate
OPC-UA variables and MQTT topics. With these
transformations, the device is being able to (indirectly)
communicate to all the other devices via its protocol or
via the other supported protocols. For example,
although being a predominantly MQTT device, S1 can
establish a communication with S2 or A1. The means of
the communication are defined at the Application layer
of the system, independently of Server or Gateway
layers. With the continuing improvement of all the layers
it will be possible to enrich the application layer as well.
Ideally it would enable end-users to have an automated
process in a modern GUI (e.g. Simulink12 like
application) in which all the devices would be out-of-the-
box blocks that are ready to be connected to each
other.

9 EtherCAT: https://www.ethercat.org/default.htm
10 BLE: https://www.bluetooth.com/what-is-bluetooth-technology/how-
it-works/le-p2p
11 Zigbee: https://www.digi.com/resources/standards-and-
technologies/rfmodems/zigbee-wireless-standard
12 Simulink: https://www.mathworks.com/products/simulink.html

138

Pisarić et al.

IS'17

Figure 1 – The architecture of the proposed solution.

4. PROTOTYPE SOLUTION
Server is implemented as a RESTful application using
the Spring framework13. Gateway is implemented as a
combination of a Spring-based application and Node-
RED14, an open-source IoT connectivity framework.
Gateway is physically stored on a Raspberry PI15 unit
that runs on Raspbian16, a Linux-based operating
system. Because of its more complex nature and
potential growth of the device descriptions database,
Server runs on a PC. Neither Gateway nor Server
required too much hardware resources and have
worked without any problems in our limited prototype.
Server application comprises two main components: (i)
the DB component which stores device descriptors and
(ii) the device driver generator component. We are
using an IoT-based descriptive language that enables
us to write abstract device descriptions. These
technology agnostic descriptions are practically
information models of a single device. Based on a
device description, e.g. device description provided by a
manufacturer, a compatible, platform specific device
driver is generated and the device is put to use.
Therefore the key starting point of this process is to
have a proper device description. For the needs of the
prototype, we have chosen the open-source Eclipse
Vorto17 project because of its features – Vorto Toolset
and Repository primarily. Definition of a function block
written in Vorto is straight forward and easily readable

13 Spring Boot: https://projects.spring.io/spring-boot/
14 Node-RED: https://nodered.org/
15 Raspberry PI: https://www.raspberrypi.org/
16 Raspbian: https://www.raspberrypi.org/downloads/raspbian/
17 Vorto: http://www.eclipse.org/vorto/

by a regular user of the system. The key elements of
Vorto descriptions are device status and operations
fields. Device descriptions are written manually using
the Vorto GUI, but the goal is to have this process
partially automatized in the future. Also, there is an
existing repository of existing device description that
can be reused. In our solution, all descriptions are
stored in the MySQL DB and are later retrieved from the
DB by providing a device ID. The device ID can be a
MAC address of BLE or LAN devices or some other,
device-specific ID that is broadcast by the device upon
connecting to Gateway. The device driver generator is
implemented in Java and takes the device description
fetched from the DB as an input. A generated driver
represents a Node-RED communication flow that is
delivered via REST API to Gateway. It is then inserted
into a running Node-RED instance and immediately it
starts to translate data from the new device to OPC-UA
and MQTT protocols which Servers are incorporated in
Gateway.
The heart of Gateway is a Node-RED-based application
that runs and continuously listens to and detects the
arrival of new devices into our closed network. One of
the nodes that is repeatedly running is the Linux
Address Resolution Protocol (ARP) scanner, a tool that
scans and refreshes the list of all the connected devices
on a specified network interface. Devices are
recognized and their IP or MAC addresses are cached.
Gateway then sends a request for the adequate driver
for the device to Server. As previously explained, this
driver is being generated on the Server side and sent
back to Gateway. If the driver is received correctly, the
Data transformation block on Gateway is enabled and

139

Pisarić et al. 5

IS'17

appropriate variables on the internal OPC-UA Server
and corresponding topics on the MQTT Broker are
dynamically created.
At this moment, the third component of our system, the
Application, is also implemented in Node-RED. Within
it, we create several nodes that represent simulated
production process. As soon as another device comes
into the system, its variables/topics are created and can
be manipulated with in this temporary application layer.
The Application itself was not one of the targets of our
research and this was made just for testing purposes.

5. THE PLASTIC MOLDING MACHINE USE
CASE
In order to make a proof of concept of the given
approach, we have set up a small model of a production
unit which is used as a prototype. Plastic parts are
produced in a molding machine whose heart is an
industrial PC. The parts are transported through the
production unit via several conveyor belts. During the
transportation the plastic parts are being tested and
sorted, as part of quality assurance process. Our model
consists of a functional industrial PC, a modeled
conveyor belt, a few small single-board computers, a
set of LEGO Mindstorms18 and a smart sensor unit. The
used IPC is a commercial device, high-end controller of
KEBA’s CP3xx series. It runs an IEC61131-319
application with all the variables being shared via
integrated OPC-UA Server. These variables are later
used in the prototype.

Figure 2 - Model of production unit used for proof of concept

LEGO Mindstorms serves as a simulator of two devices
– a color sensor on one hand and a sorting actuator on
the other. Texas Instruments SensorTag20 is used as a
temperature sensor that enters the system later during
the production and enriches the process. It’s already
prepared IoT profiles and interfaces enabled us an easy

18 LEGO Mindstorms:
http://www.education.rec.ri.cmu.edu/content/lego/ev3/files/EV3%20te
achers%20guideWEB.pdf
19 IEC61131-3:
http://www.plcopen.org/pages/tc1_standards/iec_61131_3/
20 TI SensorTag:
http://www.ti.com/ww/en/wireless_connectivity/sensortag/

introduction of sensors into our production process in
real-time. Raspberry PI, used to host Gateway and IPC
both run on Debian based Linux operating systems.
Server can run on both Windows and Linux operating
systems. Conveyor belt used in the production unit is
only a toy model that is adjusted to our needs with
adding a small DC motor that controls the flow. The
process itself is straight forward. The simulation of the
plastic brick production runs on the IPC. Bricks are laid
down on the conveyor belt in a predefined time interval.
They run underneath the color sensor and depending
on their color are sorted in one of two stocks.
Simulation is partially depicted on Figure 2.
All the components of the production unit are inserted
into a closed network one by one, while their drivers are
being generated dynamically. As soon as the
connectivity is successful, the full process can be
monitored via a 3rd party client application, e.g. OPC-
UA Server can be analyzed through UA Expert21. When
a temperature sensor is added to the network, the
process of generating the driver is repeated and the
“production” process in our production unit is enriched
with the possibility to follow and react to additional
conditions for the actuator operations. The basic option
would be to add a third level of selection or to stop a
whole production process if a condition is satisfied. For
example, if the ambient temperature is above 45°C the
production process should be stopped. Potentially, we
could replace the color sensor or the temperature
sensor in real-time and still be able to keep the process
running, which argues towards the robustness of the
presented solution.

6. DISCUSSION
In the previous sections, we presented an initial
implementation of our approach. Not only that we
focused on delivering a simple realization of the goals,
but we also tried to fit it in a real-life use case, which
enabled us to analyze advantages and disadvantages
of the current solution. We wanted to build a system in
which devices could be easily detected and connected,
with as less coding for the end-user as possible.
One of the first benefits of our implementation is the
easiness in describing devices. An engineer does not
need to write a complete driver for any particular devices
that enter the system – he can just reuse the previously
written description for a similar device with small amount
of changes. All the descriptions are adaptable but
straight forward. The main goal is to easily replace one
device with another of the same type, e.g. switching
temperature sensors. Although two sensors may have
different realization, their descriptions can still be the
same, since their main function is to measure
temperature before anything else.
On the other hand, our generative approach may lead
to potential performance issues, as a manual
implementation of device drivers most probably leads to
a faster communication. Our assumption here is that
the process of automatized generation of drivers is
several times faster than manual implementation while

21 UA Expert: https://www.unified-
automation.com/products/development-tools/uaexpert.html

140

Pisarić et al.

IS'17

the system is more flexible at the same time. The
assumption is yet to be confirmed through the detailed
tests planned for the next phase of the research.
Ideally, we would like to have fully functional and robust
Plug-and-Play mechanism on the similar level
compared to personal computing. This is obviously a
hard task to accomplish in one step but does not seem
so far-fetched with the assumption of the industry really
evolving towards standardized protocols like OPC-UA.
There are several commercial products that already
offer solutions similar to ours, but none of them is
offering a “free of charge” approach. Also, none of the
solutions that we have analyzed offers a level of
automatized generation of drivers like it is offered by the
solution presented in this paper.
At the moment we are focused on implementing support
for OPC-UA and MQTT standardized devices, but it is
clearly a doable task to translate the current knowledge
to other standards as well. We expect that with the
further company and men support we would be able to
cover as many interfaces, protocols and devices as
possible, in order to already have a widely supported
and powerful solution.

7. CONCLUSION
In this paper, we presented our approach for bringing
Plug-and-Play concept closer to production processes
in industrial automation. We proposed an approach
which is based on open-source technologies and
available for all the users without the need for additional
hardware. We also showed that our solution is generic,
platform independent and easily expendable, which
may prove as a valuable asset. In order to evaluate the
approach, we presented a prototype which was built
using small electronic devices and PCs and applied in a
simulation of a real use case. There are two key
benefits of our implementation. First is the increased
degree of automatization in device driver creation
process. Second is the increased level of abstraction in
writing device descriptions. The mentioned increases
may lead to lower performances in communication, but
additional tests must be carried out before final
conclusions are made.
One direction of future work is to try out other
description languages, e.g. Franca22, in order to
evaluate other approaches of specifying the device
description. These other description languages might
prove to be easier to learn or to use than Vorto which
would further ease the only manual task that still needs
to be performed. One of our main goals in the future is
to have a Process tool that would be block-based. The
solution presented in this paper would be a connectivity
layer for fully functional, advanced GUI that would show
all newly arriving devices as basic function blocks. This
would enable us to have, at least logically, direct
communication between various devices, irrelevant of
the background implementation of the data
transformation. Further steps include thinking of more
robust and more efficient recognition of the devices
entry. One of the approaches is to have these device

22 Franca: https://github.com/franca/franca/

descriptions stored on the devices itself, but it is a far-
fetched and inappropriate solution for older, already
deployed devices in the industry.
We find that we may have a strong enough starting
point for an AI solution that could bring the process of
generating the drivers to a higher level. Future research
will be also focused on delivering a fully automatized
Plug-and-Play mechanism that would enable the
recognition of completely new devices entering the
system and adding them to the production process
without any previous knowledge of the device. For
example, device descriptions could already be
generated automatically for groups of devices that use
standardized communication protocols i.e. those that
support OPC-UA, since there are some standardized
mechanisms of serving the data.

8. ACKNOWLEDGMENT
This research was supported by KEBA AG Linz. We
thank our colleagues from KEBA AG who provided
insight, equipment and expertise that greatly assisted
us in the research.

9. REFERENCES

[1] P. Hu, “A System Architecture for Software-Defined Industrial
Internet of Things,” in Ubiquitous Wireless Broadband (ICUWB),
2015 IEEE International Conference, Montreal, Canada, IEEE,
November 2015, pp. 1–5.

[2] C. K. M. Lee and S. Z. Zhang, “Development of an Industrial
Internet of Things Suite for Smart Factory towards Reindustriali-
zation in Hong Kong”, Proceedings of the 6th International
Workshop of Advanced Manufacturing and Automation
(IWAMA), Manchester, England, v. 24, pp. 285-289, Atlantis
Press, October 2016.

[3] C. Diedrich, A. Bieliaiev, J. Bock, et al. „Interaktionsmodell für
Industrie 4.0 Komponenten“, Special Issue: Entwurf komplexer
Automatisierungssysteme / Prof. Dr.-Ing. Ulrich Jumar. at, pp. 5-
18, Automatisierungstechnik, 2017.

[4] “Interaction Model for Industrie 4.0 Components”, Discussion
Paper of the German the Federal Ministry for Economic Affairs
and Energy, April 2016

[5] R. Schaefer, “Edge Computer reduziert Datenuebertragungs-
kosten”, in MaschinenMarkt Magazine, June 2017

[6] „What criteria do Industrie 4.0 products need to fulfil?”, ZVEI
Elektroindustrie Whitepaper, April 2017, URL:
https://www.zvei.org/en/subjects/industry-4-0/en-welche-
kriterien-muessen-industrie-40-produkte-erfuellen/

[7] Eclipse IoT White Paper – “The Three Software Stacks Required
for IoT Architectures”, September 2016, URL:
https://iot.eclipse.org/resources/white-
papers/Eclipse%20IoT%20White%20Paper%20-
%20The%20Three%20Software%20Stacks%20Required%20for
%20IoT%20Architectures.pdf

10. NOTES
[I] Allentia IoT Gateway. URL: http://www.alleantia.com/en/iot-

gateway/
[II] Evrything Thnghub. URL: https://evrythng.com/resources/data-

sheets/thnghub/
[III] AWS IoT. URL: https://aws.amazon.com/iot-platform/
[IV] DG Logic DGLux5. URL:

http://www.dglogik.com/products/dglux5-ioe-application-platform
[V] DSA – Distributed Services Architecture. URL: http://iot-dsa.org/
[VI] Harting MICA. URL: http://www.harting-mica.com/en/home/
[VII] Eclipse Hono. URL: https://eclipse.org/hono/

141

